Thermo-biolithography: a technique for patterning nucleic acids and proteins.
نویسندگان
چکیده
We describe a "biolithographic" technique in which the unique properties of biopolymeric materials and the selective catalytic activities of enzymes are exploited for patterning surfaces under simple and bio-friendly conditions. We begin by coating a reactive film of the polysaccharide chitosan onto an inorganic surface (glass or silicon wafer). Chitosan's pH-responsive solubility facilitates film deposition, while the nucleophilic properties of this polysaccharide allow simple chemistries or biochemistries to be used to covalently attach species to the film. The thermally responsive protein gelatin is then cast on top of the chitosan film, and the gelatin gel serves as a sacrificial "thermoresist". Pattern transfer is accomplished by applying a heated stamp to melt specific regions of the gelatin thermoresist and selectively expose the underlying chitosan. Finally, molecules are conjugated to the exposed chitosan sublayer and the sacrificial gelatin layer is removed (either by treating with warm water or protease). To demonstrate the concept, we patterned a reactive dye (NHS-fluorescein), a model 20-base oligonucleotide (using standard glutaraldehyde coupling chemistries), and a model green fluorescent protein (using tyrosinase-initiated conjugation). Because gelatin can be applied and removed under mild conditions, sequential thermo-biolithographic steps can be performed without destroying previously patterned biomacromolecules. These studies represent the first step toward exploiting nature's exquisite specificity for lithographic patterning.
منابع مشابه
Nucleic acid-mediated gold oxidation: novel biolithography for surface microfabrication and new insight into gold-based biomaterials.
In Nature, certain organisms can perform microbial corrosion on base metals by oxidation of neutral metallic atoms (H. L. Ehrlich, Appl. Microbiol. Biotechnol., 1997). Herein we describe the first discovery of biological nucleic acids able to catalyze and mediate gold oxidation from neutral Au(0) to trivalent Au(III) under certain oxidative environments provided by mild oxidizing reagent N-brom...
متن کاملEffect of Helium-Neon Laser and Sodium Hypochlorite on Calf Thymus Double-Stranded Deoxyribonucleic Acid Molecule: An in Vitro Experimental Study
Introduction: Low-energy helium-neon (He-Ne) laser beam lightis used in combination with sodium hypochlorite (Na2HOCl3) for clinical purposes. Regarding this, the present study aimed to investigate the effect of He-Ne laser (632.8 nm) and sodium hypochlorite on the calf thymus double-stranded deoxyribonucleic acid (ctdsDNA) molecule. Materials and Methods: For the purpose of the study, ctdsDNA...
متن کاملCooperativity in biological systems
Living organisms can sense and respond to external and internal stimuli. Response isdemonstrated in many forms including modulation of gene expression profiles, motility,secretion, cell death, etc. Nevertheless, all forms share a basic property: they depend on sensingsmall changes in the concentration of an effector molecule or subtle conformational changes ina protein and invoking the appropri...
متن کاملRNA nanotechnology breakthrough for targeted release of RNA-based drugs using cell-based aptamers
Nucleic acids play different roles besides storing information and proteins coding. For example, single-stranded nucleic acids can fold into complicated structures with capability of molecular detection, catalyzing bioreactions and therapy. The development of RNA-based therapies has been rapidly progressed in the recent years. RNA aptamers are biomolecules with a size of 10 to 50 nm that can be...
متن کاملCellular Morphology and Immunologic Properties of Escherichia coli Treated With Antimicrobial Antisense Peptide Nucleic Acid
Background & Objectives: Antisense peptide nucleic acids (PNA) that target growth essential genes show potent bactericidal properties without cell lysis. We considered the possibility that whether PNA treatment influence the bacteria total nucleic acids content and apply approach to develop a new delivery system to Dendritic cells (DCs). DCs are the most potent antigen presenting cells in th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 20 3 شماره
صفحات -
تاریخ انتشار 2004